

12

ASYMPTOTIC PROBABILITIES IN A CRITICAL AGE-DEPENDENT BRANCHING PROCESS

by

Howard J. Weiner

Technical Repert No. 240 December 3, 1976

(14) TR-240

Prepared under Contract N00014-76-C-0475

(NR-042-267) Office of Naval Research

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government

Approved for public release; distribution unlimited

DEPARTMENT OF STATISTICS STANFORD UNIVERSITY STANFORD, CALIFORNIA

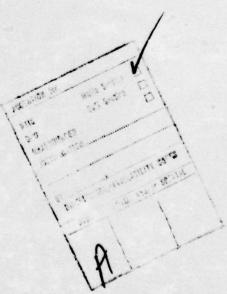
Asymptotic Probabilities in a Critical Age-Dependent Branching Process

by Howard J. Weiner

ABSTRACT

Let Z(t) denote the number of cells alive at time t in a critical Bellman-Harris age-dependent branching process, that is, where the mean number of offspring per parent is one. A comparison method is used to show for $k \ge 1$, and a high-order moment condition on G(t), where G(t) is the cell lifetime distribution, that $\lim_{t\to\infty} t^2 P[Z(t)=k] = a_k > 0$, where $\{a_k\}$ are constants.

The method is also applied to the total progeny in the critical process.



Asymptotic Probabilities in a Critical Age-Dependent Branching Process

by Howard J. Weiner

1. Introduction.

Let Z(t) denote the number of cells alive at time t in a critical Bellman-Harris [2] age-dependent branching process. That is, at time t=0, the process starts with one new cell with lifetime distribution G(t), G(0+)=0, non-lattice, and

(1.1)
$$G'(t) = g(t),$$

the density exists, and for some $\delta > 0$,

(1.2)
$$\int_0^\infty t^{4+\delta} g(t) dt < \infty.$$

At the end of its life, the cell disappears and is immediately replaced by k new cells with probability $\boldsymbol{p}_k \geq 0$, with

$$\sum_{k=0}^{\infty} p_k = 1$$

and criticality,

(1.4)
$$\sum_{k=1}^{\infty} k p_k = 1.$$

Each new cell proceeds identically as the parent cell and independently of all other cells and the state of the system. Assume that for all integers k,

(1.5)
$$\sum_{n=1}^{\infty} n^{k} p_{n} < \infty.$$

It is the purpose of this note to show that for $k \ge 1$,

(1.6)
$$\lim_{t \to \infty} t^2 P[Z(t)=k] = a_k > 0,$$

where {a_L} are constants.

The method is also applied to total progeny in the critical process.

2. Integral Equation and Result.

Define the offspring generating function, for $0 \le s \le 1$,

(2.1)
$$h(s) = \sum_{k=0}^{\infty} p_k s^k.$$

Define the generating function for Z(t) as, for $0 \le s \le 1$, all $t \ge 0$,

(2.2)
$$F(s,t) = E(s^{Z(t)}).$$

Then [2] F(s,t) satisfies

(2.3)
$$F(s,t) = 1 - G(t) + \int_0^t h(F(s,t-u))dG(u),$$

with F(s,0) = s.

Theorem. Let Z(t) denote the number of cells at time t in a critical Bellman-Harris branching process satisfying (1.1) - (1.5). Assume also that the derivatives of h satisfy

$$(2.4) 0 < h''(1) < \infty, 0 < h'''(1) < \infty.$$

Then for $k \ge 1$

(2.5)
$$\lim_{t \to \infty} t^2 P[Z(t) = k] = a_k > 0$$

where (a) are constants.

Proof. Consider first the case k = 1, and write for simplicity

(2.6)
$$P(t) = P[Z(t)=1].$$

From the representation (2.3), derivatives of F(s,t) with respect to s exist, and note that

(2.7)
$$\frac{\partial F(s,t)}{\partial s}\bigg|_{s=0} = P(t).$$

From (2.7), (2.3) one obtains the relationship

(2.8)
$$P(t) = 1 - G(t) + \int_{0}^{t} h'(1-Q(t-u))P(t-u)dG(u)$$

and P(0) = 1,

where

(2.9)
$$Q(t) = P[Z(t) > 0].$$

From [2],

(2.10)
$$\lim_{t \to \infty} tQ(t) = 2\mu(h''(1))^{-1},$$

where

(2.11)
$$\mu \equiv \int_0^\infty t dG(t).$$

Assume for simplicity in all the following that

$$(2.12)$$
 $\mu = 1.$

The proof will proceed by a number of claims.

Claim I. Let R(t) be continuous, R(0) = 0, and satisfy, for t > 0, that

(2.13)
$$R(t) > \int_{0}^{t} h'(1-Q(t-u))R(t-u)dG(u).$$

Then for all t > 0,

(2.14)
$$R(t) > 0.$$
 (<)

Proof. Assume the upper inequality of (2.13).

Note first that for all t > 0,

(2.15)
$$R(t) \neq 0$$
.

This follows from (2.13) by assuming there is a t_0 such that $R(t_0) = 0$, and a contradiction is clear.

If the upper inequality in (2.13) is false, (2.15) requires that R(t) < 0 for t > 0. Then on an arbitrary interval [0,t], assume that R(t) assumes its minimum at $t_1 \le t$. Since $0 \le h'(x) \le 1$, setting $t = t_1$ in the upper inequality (2.13) yields a contradiction. The lower inequality of (2.13) implies the lower inequality of (2.14) similarly, completing the claim.

Claim II. For some $0 < \varepsilon < 1$, all $t \ge 0$, define

(2.16)
$$K(t) = \begin{cases} 1 & , & t < 1 \\ \frac{1}{t^{2-\epsilon}} & , & t \ge 1 \end{cases}$$

(2.17)
$$L(t) = \begin{cases} 1, & t < 1 \\ \frac{1}{t^{2+\epsilon}}, & t \ge 1. \end{cases}$$

Then for all t sufficiently large,

(2.18)
$$K(t) > 1 - G(t) + \int_0^t h'(1-Q(t-u))K(t-u)dG(u)$$

and

(2.19)
$$L(t) < 1 - G(t) + \int_0^t h'(1-Q(t-u))L(t-u)dG(u)$$
.

Proof. To show (2.18), note that the right side yields the inequality

(2.20)
$$\int_{0}^{t} h'(1-Q(t-u))K(t-u)dG(u) \leq G(t) - G(t/2)$$
$$+ \int_{0}^{t/2} h'(1-Q(t-u))K(t-u)dG(u).$$

A Taylor expansion of the rhs of (2.20) yields,

(2.21)
$$\int_{0}^{t/2} h'(1-Q(t-u))K(t-u)dG(u)$$

$$= \int_{0}^{t/2} (1-Q(t-u)h''(1) + o(Q(t-u)))K(t-u)dG(u).$$

A Newton binomial expansion applied to the rhs integrand of (2.21) using (2.10), Theorem 4, p. 406 of [3], (2.16), and that $\mu \equiv 1$ yields that the rhs of (2.21) equals

$$(2.22) \int_{0}^{t/2} (1 - \frac{2}{t-u} + o(\frac{1}{t-u})) \frac{dG(u)}{(t-u)^{2-\varepsilon}}$$

$$= \frac{1}{t^{2-\varepsilon}} \int_{0}^{t/2} \frac{dG(u)}{(1 - \frac{u}{t})^{2-\varepsilon}} - \frac{2}{t^{3-\varepsilon}} + o(\frac{1}{t^{3-\varepsilon}})$$

$$= \frac{1}{t^{2-\varepsilon}} \int_{0}^{t/2} (1 + \frac{(2-\varepsilon)u}{t} + o(\frac{1}{t})) dG(u) - \frac{2}{t^{3-\varepsilon}} + o(\frac{1}{t^{3-\varepsilon}})$$

$$= \frac{1}{t^{2-\varepsilon}} + \frac{(2-\varepsilon)}{t^{3-\varepsilon}} - \frac{2}{t^{3-\varepsilon}} + o(\frac{1}{t^{3-\varepsilon}})$$

$$< \frac{1}{t^{2-\varepsilon}}$$

for all t sufficiently large. In view of (2.20), (1.1), this suffices for (2.18), and (2.19) follows similarly.

Claim III. For $0 < \varepsilon < 1$, and all t sufficiently large,

$$(2.23) \qquad \frac{1}{t^{2+\epsilon}} < P(t) < \frac{1}{t^{2-\epsilon}}.$$

Proof. This follows from Claims I and II, where R = K - P, for example.

Claim IV. Let R(t) satisfy

(2.24)
$$R(t) = 1 - G(t) + \int_0^t h'(1-Q(t-u))R(t-u)dG_0(u),$$

with R(0) = 1, where Q(t) is the probability of non-extinction for the process with lifetime G(t), and

(2.25)
$$1 - G_o(t) = e^{-t}.$$

Then as $t \rightarrow \infty$,

$$(2.26) R(t) \sim \frac{c}{t^2}$$

for some constant c > 0.

Proof. Write (2.24) as

(2.27)
$$R(t) = 1 - G(t) + e^{-t} \int_{0}^{t} h'(1-Q(u))R(u)e^{u}du$$
.

Differentiating, with respect to t,

(2.28)
$$R'(t) = -g(t) + (1-G(t)-R(t)) + h'(1-Q(t))R(t)$$
.

Then, expanding h in a Taylor series, one obtains

(2.29)
$$R'(t) + \frac{2}{t}R(t) = f(t)$$

where

(2.30)
$$f(t) = 1 - G(t) - g(t) + \frac{h'''(t)}{2}Q^{2}(t)R(t) + (Q(t) - \frac{2}{h''(1)t})R(t)$$

with 1 - $Q(t) \le * \le 1$. In view of (1.1), (1.2), (1.5), it follows from Theorem 4 of [3], p. 406, that

(2.31)
$$(Q(t) - \frac{2}{h''(1)t}) = O(\frac{\log t}{t^2}).$$

An analysis similar to that in Claims I - III yields that for $0<\varepsilon<1$, for t sufficiently large,

$$\frac{1}{t^{2+\epsilon}} < R(t) < \frac{1}{t^{2-\epsilon}}.$$

Then (1.1), (2.31), (2.32) used in (2.30) imply that

(2.33)
$$t^2f(t)$$

is integrable with respect to Lebesgue measure on the positive line.

To solve (2.29) for t large, let

(2.34)
$$Q(t) \equiv t^2 R(t)$$
.

Then (2.29) becomes

(2.35)
$$Q'(t) = t^2 f(t)$$
.

For fixed $t_0 > 0$, one then obtains

(2.36)
$$Q(t) - Q(t_0) = \int_{t_0}^{t} \xi^2 f(\xi) d\xi$$

or

$$(2.37) R(t) \sim \frac{c}{t^2}$$

for t sufficiently large, and c > 0, completing this claim.

Claim V. Let

(2.38)
$$T(t) = 1 - G(t) + \int_{0}^{t} h'(1-Q(t-u))R(t-u)dG(u)$$
.

Then, as $t \rightarrow \infty$,

(2.39)
$$t^2 |T(t)-R(t)| \to 0$$
.

Proof.

$$|T(t)-R(t)| \le \left| \int_0^{t/2} h'(1-Q(t-u))R(t-u)(dG(u)-dG_0(u)) \right| + G(t) - G(t/2) + G_0(t) - G_0(t/2).$$

A Taylor series and Newton binomial expansion on the right side integrand of (2.40) yields

$$(2.41) \int_{0}^{t/2} \left[1 - Q(t-u)h''(1) + Q^{2}(t-u)h'''(k(t-u))\right] \left[\frac{c}{(t-u)^{2}} + o(\frac{1}{(t-u)^{2}})\right] \left(dG(u) - dG_{o}(u)\right)$$

where

$$(2.42) 1 - Q(t-u) \le k(t-u) \le 1,$$

and expression (2.41) equals

$$(2.43) \int_{0}^{t/2} \left[1 - \frac{2}{t-u} + o(\frac{1}{t-u})\right] \left[\frac{c}{(t-u)^{2}} + o(\frac{1}{(t-u)^{2}})\right] \left(dG(u) - dG_{o}(u)\right)$$

$$= \int_{0}^{t/2} \left[1 - \frac{2}{t}(1 + \frac{u}{t}) + o(\frac{1}{t})\right] \left[\frac{c}{t^{2}} + o(\frac{1}{t})\right] \left(dG(u) - dG_{o}(u)\right)$$

$$= o(t^{-4}),$$

for t sufficiently large, using that

$$\mu = \int_0^\infty u dG(u) = \int_0^\infty u dG_0(u) = 1.$$

This completes Claim V.

The proof of the theorem for P(t) may now be completed. Define the iterative scheme, for $n \ge 0$

(2.44)
$$P_{(n+1)}(t) = 1 - G(t) + \int_{0}^{t} h'(1-Q(t-u))P_{(n)}(t-u)dG(u),$$

and let

(2.45)
$$P_{(0)}(t) \equiv R(t)$$
.

Then from (2.38), it follows that

(2.46)
$$P_{(1)}(t) = T(t)$$
.

Claims IV and V imply that, for 't large,

(2.47)
$$P_{(0)}(t) \sim \frac{c}{t^2}$$
 and $P_{(1)}(t) \sim \frac{c}{t^2}$.

An induction argument along the lines of Claim V establishes that, for large t,

(2.48)
$$P_{(n)}(t) \sim \frac{c}{t^2}$$
.

Note that for $n \ge 0$,

(2.49)
$$P(t) - P_{(n+1)}(t) = \int_{0}^{t} h'(1-Q(t-u))(P(t-u)-P_{(n)}(t-u))dG(u).$$

Denote

(2.50)
$$\Delta_{n}(t) \equiv P(t) - P_{(n)}(t),$$

then from (2.49),

(2.51)
$$|\Delta_{n+1}(t)| < \int_{0}^{t} |\Delta_{n}(t-u)| dG(u) < |\Delta_{0}|^{*}G_{n+1}(t),$$

where * denotes convolution, and $G_n(t)$ is the n^{th} convolution of G with itself.

Let $\{X_i^{}\}$ denote I.I.D. random variables, with distribution function G(t). Set

$$(2.52) S_n = \sum_{i=1}^n X_i.$$

Then

(2.53)
$$G_n(t) = P[S_n \le t] = P[S_n - n \le t - n],$$

and if one takes n > t, by (1.2) and Chebyshev's inequality,

(2.54)
$$G_n(t) \leq \frac{\text{Var } S_n}{(n-t)^2} = \frac{n}{(n-t)^2}$$
.

Also,

(2.55)
$$|\Delta_0| * G_n(t) \le G(t) - G(t/2) + \int_0^{t/2} |P(t-u)-R(t-u)| dG_n(u)$$

and (1.2), Claims III, Iv, and (2.54) yields that

(2.56)
$$|\Delta_0| \star G_n(t) \leq \frac{Kn}{t^{2-\epsilon}(n-t)^2},$$

where K is a constant.

For fixed large t, let

$$(2.57) n > [t^{1+\epsilon}].$$

This suffices for the proof of the theorem for P(t) = P[Z(t) = 1].

For $k \ge 2$, note that

(2.58)
$$k!P[Z(t)=k] = k!P_k(t) = \frac{\partial^k F(s,t)}{\partial s} \bigg|_{s=0}.$$

Then (2.58) applied to (2.3) for k = 2 yields

(2.59)
$$P_{2}(t) = \frac{1}{2} \int_{0}^{t} h''(1-Q(t-u))P^{2}(t-u)dG(u) + \int_{0}^{t} h'(1-Q(t-u))P_{2}(t-u)dG(u).$$

Since the theorem is true for P(t), then as (2.59) is of the same form as (2.8), a similar analysis as that used to establish the result for P(t) also establishes it for $P_2(t)$. Assume the result true for $P_k(t)$, $k \le n$. Applying (2.58) to (2.3) for k = n+1 yields an equation of the form

(2.60)
$$P_{n+1}(t) = f_{n+1}(t) + \int_0^t h'(1-Q(t-u))P_{n+1}(t-u)dG(u)$$

where the induction hypothesis yields that

(2.61)
$$f(t) = o(t^{-4}).$$

In view of (2.61), equation (2.60) is of the same form as (2.8), and the analysis for P(t) applies to $P_{n+1}(t)$, yielding the theorem.

Remark. This result is known for the critical discrete-time or Galton-Watson process. See [2] Ch. 1, for example. It may be possible that a series of comparison sequences of the type given in (2.44), (2.45) relating the critical Bellman-Harris process with a corresponding critical Galton-Watson process could yield this result.

3. Total Progeny.

For another application of the method, let

(3.1) N(t) = total number of progeny born by t in a critical agedependent branching process with $\infty > h'(1) \equiv \sum_{k=1}^{\infty} k p_k > 0$.

Denote, for $0 \le s \le 1$, $t \ge 0$

(3.2)
$$H(s,t) = E(s^{N(t)}) = \sum_{k=1}^{\infty} P[N(t)=k]s^{k}$$
.

Then (e.g. [4], p. 394)

(3.3)
$$H(s,t) = s \left[1 - G(t) + \int_{0}^{t} h(H(s,t-u))dG(u)\right].$$

Since, for $k \ge 1$,

(3.4)
$$\frac{\partial^{k} H(s,t)}{\partial s^{k}} \bigg|_{s=0} = k! P[N(t)=k] \equiv k! Q_{k}(t)$$

one may apply (3.4) to (3.3) to obtain the limiting values of $P[N(t)=k] \equiv Q_k(t)$.

For k = 1, 2 one obtains, since H(0,t) = 0, that

(3.5)
$$Q_1(t) = 1 - G(t) + \int_0^t h(0)dG(u) \rightarrow p_0$$
 as $t \rightarrow \infty$.

(3.6)
$$Q_2(t) = \int_0^{t/2} + \int_{t/2}^t h'(0)Q_1(t-u)dG(u) \rightarrow p_0p_1$$
 as $t \rightarrow \infty$.

Similarly, by induction and an application of Leibniz' lemma for successive differentiation, the limiting values of the $\{Q_k(t)\}$ may be obtained. This result is implied by a representation essentially as that in [1], pp. 275-276. No assumptions on higher moments of G are required, but all moments of h(s) are needed in this approach.

REFERENCES

- [1] ATHREYA, K. B. and KARLIN, S. (1967). Limit theorems for the split times of branching processes. Jour. Math. and Mechanics 17, 257-278.
- [2] ATHREYA, K. and NEY, P. (1972). <u>Branching Processes</u>. Springer-Verlag, New York.
- [3] CHOVER, J. and NEY, P. (1968). The non-linear renewal equation.
 J. d'Analyse Mathématique, 21, 381-413.
- [4] WEINER, H. (1966). One age-dependent branching processes.

 J. Appl. Prob. 3, 383-402.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE			READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT NUMBER	/ 2.	GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitio)			S. TYPE OF REPORT & PERIOD COVERED
ASYMPTOTIC PROBABILITIES IN A CRITICAL AGE-DEPENDENT BRANCHING PROCESS			Technical Report
			6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(+)			S. CONTRACT OR GRANT NUMBER(+)
HOWARD J. WEINER			N00014-76-C-0475 V
PERFORMING ORGANIZATION NAME AND ADDRESS			10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Department of Statistics Stanford University Stanford, California			(NR-042-267)
11. CONTROLLING OFFICE NAME AND ADDRESS			December 3, 1976
Office of Naval Research Statistics & Probability Program Code 436			13. NUMBER OF PAGES
Arlington, Virginia 22217 14. MONITORING AGENCY NAME & ADDRESS/II different from Controlling Office)			15. SECURITY CLASS. (of this report)
MONTO AND MODEROT MARKE & ROOM			UNCLASSIFIED
			18a. DECLASSIFICATION/DOWNGRADING
7. DISTRIBUTION STATEMENT (of the abo	stract antered in I	Block 20, if different fre	m Report)
8. SUPPLEMENTARY NOTES	•		
9. KEY WORDS (Continue on reverse elde in CRITICAL BRANCHING P	ROCESS	dentify by block number)	
ASYMPTOTIC PROBABILITAGE DEPENDENT	IY		
O. ABSTRACT (Continue en reverse elde if	nocessary and Id		
		SEE REVE	RSE SIDE
	August 1 - C. L. C.		

Asymptotic Probabilities in a

Critical Age-Dependent Branching Process

by Howard J. Weiner

ABSTRACT

Let Z(t) denote the number of cells alive at time t in a critical Bellman-Harris age-dependent branching process, that is, where the mean number of offspring per parent is one. A comparison method is used to show for x = 0, and a high-order moment condition on G(t), where G(t) is the cell lifetime distribution, that x = 0 where x = 0, where x = 0 are constants.

The method is also applied to the total progeny in the critical process.

* in the limit as tapproaches infinity t squared P[...

